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Abstract

An optimally flared tunnel portal causes the pressure to rise linearly across the front of the compression
wave generated by an entering high-speed train. The wave front thickness � ‘=M when the flared section
has length ‘ and the train Mach number is M. The flared portal would likely be constructed in practice
using a set of coaxial cylindrical sections that together approximate the ideal flared geometry. A numerical
study is described in this paper to determine how these discrete sections modify the generation of the
compression wave. The interaction of train nose ‘sources’ with successive changes in portal diameter
produces a ‘rippling’ of the pressure wave profile. Our results show how the amplitude of these fluctuations
depends on the length of the train nose and on the number of cylindrical sections, and suggest that an
ideally flared portal is well approximated by a stepped-portal fabricated from three or four sections. The
results are applicable for train Mach numbers up to about 0.25 (� 300 kphÞ:
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The structure of the compression wave generated when a high-speed train enters a tunnel
depends critically on tunnel portal geometry. The wave amplitude increases approximately as U2

for a train travelling at speed U, and the initial thickness of the compression wave front decreases
like 1=M; whereM ¼ U=c0 is the train Mach number (c0 being the mean sound speed in air) [1–4].
Both of these effects tend to exacerbate nonlinear steepening of the wave front in a long tunnel,
especially in modern tunnels with concrete slab tracks, which are effectively ‘acoustically smooth’
see front matter r 2004 Elsevier Ltd. All rights reserved.
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and offer negligible attenuation of the advancing wave front relative to that produced by
conventional ballasted track. For long tunnels and train speeds U exceeding about 200 kph, a loud
and startling acoustic ‘bang’ (the ‘micro-pressure wave’) is frequently radiated out of the distant
tunnel exit when the compression wave arrives [1,3,5–7]; the amplitude of this bang is
proportional to the wave front steepness of the arriving compression wave.
Nonlinear steepening in a long tunnel is inhibited by diffusive wave thickening produced by

dissipation, provided the initial thickness of the compression wave is sufficiently large [1]. The
dissipation is small in tunnels with concrete slab-track, and it is then usual to suppress nonlinear
steepening by attempting to greatly increase the initial ‘rise time’ of the compression wave. This is
done by modifying the tunnel portal where the train enters. The least costly portal modification
consists of the tunnel entrance ‘hood’, which is a thin-walled, cylindrical extension of the tunnel,
usually provided with a sequence of open ‘windows’ that permit the release of high-pressure air
produced by an entering train. An alternative modification is the flared portal, which has been
examined theoretically by Howe [8] and experimentally by Howe et al. [9]. Fig. 1(a) illustrates
schematically a uniform tunnel with an integrated flared opening section of length ‘: Such a portal
behaves optimally when the profile of the compression wave produced by an entering train
increases linearly with time; for a hood of length ‘ this linearly increasing wave front would have
thickness � ‘=M; which is several times the hood length ‘; because typically M � 0:25 for high-
speed operations.
Fig. 1. (a) Train entering a tunnel with a flared portal of length ‘; (b) axisymmetric flared portal with infinite flange.
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Experimental studies of hood design are frequently performed at model scale using
axisymmetric tunnel models. The experiments described in Ref. [9] involved an axisymmetric
flared tunnel portal of the type illustrated in Fig. 1(b). The model train was also axisymmetric and
was projected at high speed into the tunnel along a guide wire stretched along the tunnel axis and
passing through a cylindrical axisymmetric bore hole drilled in the model train (see Ref. [9] for a
detailed description of the experiment and experimental procedure). The present discussion will be
framed in terms of this model configuration, but the results should be applicable also for more
general tunnel and portal cross-sections.
It was shown in Ref. [8] that a flared portal of length ‘ behaves optimally (produces a linearly

increasing pressure across the compression wave front) provided its cross-sectional area SðxÞ

varies with distance x along its axis according to

SðxÞ
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In this formula the coordinate origin is at O in the entrance plane of the flared portal (see Fig.
1(b)), with the negative x-axis coinciding with the tunnel axis; the tunnel is uniform for xo� ‘
with radius R and cross-section A ¼ pR2: AE is the cross-sectional area in the entrance plane
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provided that ‘42R=3
ffiffiffi
3

p
� 0:385R:

In the model scale tests described in Ref. [9] the tunnel and portal dimensions were

R ¼ 5 cm; ‘ ¼ 50 cm; AE=A ¼ 5:35; RE=R ¼ 2:31; ð3Þ

where RE is the entrance-plane radius (so thatAE ¼ pR2E). The axisymmetric model train used in
the experiments had an ellipsoidal nose profile obtained by rotating the curve y ¼

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=LÞð2� x=LÞ

p
; 0oxoL about the x-axis. The cross-sectional area of the train AT ðxÞ at

distance x from the nose tip is therefore given by
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where A0 ¼ ph2; and

h ¼ 2:235 cm; L ¼ 11:18 cm: ð5Þ

The tail of the model train has an identical ellipsoidal shape, and the overall length of the train
was 91.5 cm.
The pressure rise across the wave front is given approximately by [8,9]

Dp ¼
r0U
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Typical measured values (from Ref. [9]) of the nondimensional pressure p=Dp (open triangles,
n) and ‘pressure gradient’ Rðqp=qtÞ=UDp (solid circles, 	) are plotted in Fig. 2 against the non-
dimensional retarded time U ½t�=R � Uðt þ x=c0Þ=R (see Section 2) for the optimized model scale
portal and tunnel with dimensions (3), when the train with nose profile defined by Eqs. (4) and (5)
is projected into the tunnel along the axis at U ¼ 294 kph (M ¼ 0:24) and the nose crosses the
entrance plane x ¼ 0 at t ¼ 0: The measurements were made in the tunnel at a distance of 1.5m
from the portal entrance plane; the pressure rises linearly across the wave front over
0oU ½t�=Ro10 � ‘=R; during the retarded time in which the train nose traverses the length of
the flared portal.
In this paper we examine theoretically how this optimal behaviour of the flared portal is

modified when the smoothly profiled entrance is replaced by a step-wise series of coaxial
cylindrical sections, as indicated schematically in Fig. 3, which illustrates the case where the flared
profile (broken line curves) is replaced by three cylindrical sections of equal axial length. This type
of configuration would arise at full scale when, for reasons of economy, the tunnel portal is
constructed from sectionally cylindrical components. We shall examine the properties of the
compression wave profile generated when the train enters a flared portal constructed in this step-
wise fashion, and in particular determine the minimum number of steps that will supply an
acceptable approximation to the ideal linear pressure rise across the compression wave front.
The relevant formulae from the theory of compression wave formation are recalled in Section 2.

In Section 3 the numerical procedure for analysing the sectionally cylindrical portal is discussed.
Numerical results are presented in Section 4. These suggest that a hood with four or more steps of
equal length can be expected to provide smooth and environmentally acceptable compression
wave profiles, and that it is now appropriate to confirm this conclusion by experiment.
Fig. 2. Calculated (——) and measured values of the nondimensional compression wave pressure (n n n) and

pressure gradient (	 	 	), p
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produced when the model scale train with the

ellipsoidal nosed defined by Eqs. (4) and (5) enters the flared portal and tunnel with dimensions (3) at U ¼ 294 kph:



ARTICLE IN PRESS

Fig. 3. Approximation to an optimally flared entrance portal by three cylindrical sections of equal axial extent.
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2. Analytical representation of the compression wave

The compression wave radiated ahead of the train as it enters the portal and tunnel can be
attributed to two principal sources: (i) the piston effect of the ‘monopole’ displacement of air by
the train plus the ‘dipole’ contribution caused by the pressure rise over the train nose, and (ii) the
aerodynamic sound produced by separated flow to the rear of the train nose [10]. For the flared
portal the experiments in Ref. [9] confirmed that the contribution from separation becomes
important only after the train nose has passed through the portal and into the uniform section of
the tunnel, and it therefore influences only the ‘late time’ behaviour of the wave, to the rear of the
wave front.
The detailed characteristics of the wave front are controlled by the ‘piston’ source (1). In the

tunnel region just ahead of the train, before the onset of nonlinear steepening, this contribution to
the compression wave pressure pðx; tÞ can be expressed in the form [4,9]

pðx; tÞ �
r0U
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where ½t� ¼ t þ ðx � ‘0Þ=c0 is the effective retarded time, and the front of the train is assumed to
pierce the entrance plane of the portal at time t ¼ 0: The length ‘0 is the ‘end correction’ of the
tunnel portal [11,12], and j�ðxÞ is an auxiliary, harmonic function that depends on the shape of
the portal, and has the simple physical interpretation as the velocity potential of ideal,
incompressible flow out of the tunnel portal normalized such that (when the ‘flange’ in Figs. 1 and
3 is large)

j�ðxÞ �
x � ‘0 as x ! �1 inside the tunnel;

�A=2pjxj as jxj ! 1 outside the tunnel:

�
ð8Þ
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Approximation (7) for the compression wave is applicable when the train ‘blockage’
A0=Ao0:22 [9] and provided the portal of length ‘ can be regarded as acoustically compact,
i.e. when ‘ is small compared to the thickness of the compression wave front. For a portal
optimized in accordance with Eqs. (1) and (2), the wave front thickness � ‘=M; so that the portal
may be regarded as compact provided the train Mach number is small enough. The experiments
reported in Ref. [9] confirmed the validity of this conclusion forM as large as 0.25 (U � 300 kph);
in this paper we shall continue to assume that the portal length ‘ is compact.
For the optimally flared portal (with a ‘large’ flange, as in Fig. 1) the cross-sectional area SðxÞ

varies ‘slowly’ and in the neighbourhood of the tunnel axis j�ðxÞ is well approximated by [8,9]
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The formula for x40 coincides with the potential produced by a ‘baffled’ piston of radius RE and
normal velocity A=AE in the exit plane x ¼ 0: For optimal and nonoptimal portals the end
correction ‘0 is given by

‘0 ¼ R
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The integrand in representation (7) of the compression wave vanishes except in the vicinities of
the nose and tail of the train, where qAT=qx0a0: The compression wave is generated when the
train nose enters the tunnel, and for the purpose of its calculation we may ignore the contribution
from the tail, and formally assume the train to be infinitely long, so that the integrand in Eq. (7) is
only nonzero in the neighbourhood of the nose. When the nose is fully within the tunnel, we can
set qj�=qx0 ¼ 1 in the integral; Eq. (7) then yields the overall pressure rise across the wave front
given above in Eq. (6).
The solid curves in Fig. 2 represent predictions of p and qp=qt from Eq. (7) compared with the

experiment of Ref. [9] discussed in Section 1. Theory and experiment are evidently in excellent
accord.
3. Numerical evaluation of j�ðxÞ

Representation (7) of the compression wave pressure is also applicable to the step-profiled
tunnel portal, and the harmonic function j�ðxÞ continues to satisfy conditions (8), although in
general the value of the end correction ‘0 will vary with the number of steps. The function j�ðxÞ is
the axisymmetric solution of Laplace’s equation satisfying the asymptotic relations (8) (describing
steady, irrotational flow from the portal) and must be determined numerically. It is convenient to
do this by first computing the corresponding Stokes stream function c�

� c�
ðx; rÞ; r ¼ ðy2 þ

z2Þ1=2 [13,14], in terms of which
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For irrotational flow c� satisfies
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The stream function assumes constant values on the axisymmetric ‘stream surfaces’ of the
hypothetical flow from the portal. The first condition (of uniform mean flow) in Eq. (8) implies
that

c�
!

r2

2
; 0oroR as x ! �1 in the tunnel: ð13Þ

Thus, c�
¼ 0 on the axis r ¼ 0 of the tunnel, and assumes the constant value c�

¼ R2=2 on the
tunnel and portal wall. To a good approximation the flow from the portal entrance plane (x ¼ 0)
described by j� may also be assumed to be uniform, in which case continuity implies that

c�
¼

A

AE

r2

2
; 0oroRE at x ¼ 0: ð14Þ

To obtain a numerical solution of Eq. (12) the asymptotic condition (13) (which is actually
attained exponentially fast with distance into the tunnel) will be applied at one tunnel diameter
from the inner end of the portal (i.e. at x ¼ �‘ � 2R). Then, Eq. (12) is to be solved within the
domain of the ðx; rÞ-plane illustrated in Fig. 4(a) for the case of two cylindrical sections; the figure
shows the prescribed values of c� at all points of the domain boundary. The solution can be found
using a conventional finite difference approximation, by covering the integration region with a
Fig. 4. (a) The boundary values and numerical integration domain for Eq. (12) satisfied by the Stokes stream function

c�
ðx; rÞ when the flared portal is approximated by two steps. (b) Illustrating the definitions of c�

N ; c
�
S ; c

�
E ; c

�
W in

neighbouring spreadsheet cells of side d that determine the value of c�
0:
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grid of squares of side d5R: Following Morishita [15] the calculations can be conveniently and
quickly performed using an Excel spreadsheet, in which each spreadsheet cell is identified with a
square of the grid. Those cells lying on the boundary of the integration region are filled with the
prescribed boundary values of c�: The value c�

¼ c�
0 at an interior cell ‘0’, say (see Fig. 4(b)), is

related to values in neighbouring cells by the finite difference scheme. In the simplest case Eq. (12)
evaluated at the centre of cell 0 becomes

c�
E � 2c�
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þ
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¼ 0; ð15Þ

where c�
N ; c

�
S; c�

E ; c�
W are the values of c� in the neighbouring cells shown in Fig. 4(b), and

r ¼ nd; n ¼ 1; 2; 3; . . . is the radial distance of the centre of cell 0 from the axis of symmetry.
Hence,
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This formula is inserted into each interior cell of the spreadsheet and the Excel program is then
run in ‘iterative mode’ until calculated cell values cease to change relative to a predefined level of
accuracy. The number of iterations depends on the ratio d=R and on the level of accuracy
prescribed for the spreadsheet calculations. In the results presented below we have taken d=R ¼

0:01: Further details of the procedure are discussed in Ref. [16].
4. Numerical results

To evaluate the compression wave pressure from the integral in Eq. (7) the variation of qj�=qx
is required on the tunnel axis (the x-axis). Typical calculated values of qj�ðx; 0; 0Þ=qx and
q2j�ðx; 0; 0Þ=qx2 are displayed in Fig. 5 for portal configurations involving 2, 3, and 5 step
changes in diameter (the values of these functions outside the tunnel, in x40; are defined by the
piston approximation of Eq. (9)). Also shown are the corresponding values of these derivatives for
the optimally flared portal of Fig. 1(b), calculated from Eq. (9). It is evident that the predictions
for the stepped configurations approach the optimal variations as the number of steps increases.
Sample predictions of Eq. (7) of the compression wave pressure p and the pressure gradient

qp=qt are presented in Figs. 6 and 7 for two different model trains with ellipsoidal nose shapes,
and for tunnel and portal dimensions given in Eq. (3). In both cases the train enters the tunnel at
U ¼ 294 kph (M ¼ 0:24) at the nondimensional retarded time U ½t�=R � 0 (not exactly 0 because
½t� ¼ t þ ðx � ‘0Þ=c0; where according to Eq. (10) the end correction ‘

0 is negative and is of order R
in absolute value). For the cases illustrated in Fig. 6 the train nose aspect ratio L=h ¼ 3; where
h ¼ 2:235 cm; as in Eq. (5), and the train blockage A0=A ¼ 0:2: The solid curves show the
predicted variations of p and qp=qt for portals with 3, 5 and 7 steps. The main pressure rise across
the wave front is essentially linear with superposed ripples; the amplitude of the ripples decreases
as the number of steps increases. In all cases the main pressure rise occurs over a nondimensional
time interval Ut=R � 10 during which the train nose traverses the flared section, so that the
thickness of the compression wave front � 10R=M ¼ ‘=M; which is about four times the length
of the portal. For the optimally flared, smooth-walled portal defined by Eqs. (1) and (2), the



ARTICLE IN PRESS

Fig. 5. Calculated values of qj�=qx and q2j�=qx2 on the axis of the tunnel and portal for (a) 2, (b) 3 and (c) 5 step

configurations.
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Fig. 6. Calculated nondimensional pressure and pressure gradient (——), p
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for a portal with (a) 3, (b) 5 and (c) 7 steps and overall dimensions (3), compared with predictions (� � �) for an

optimally flared portal for an ellipsoidal train nose (4) with h ¼ 2:235 cm; L=h ¼ 3 and U ¼ 294 kph:
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Fig. 7. Calculated nondimensional pressure and pressure gradient (——), p
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for a portal with (a) 4 and (b) 5 steps and overall dimensions (3), compared with predictions (� � �) for an optimally

flared portal for an ellipsoidal train nose (4) with h ¼ 2:235 cm; L=h ¼ 5 and U ¼ 294kph:
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pressure rise is almost exactly linear over the interval 0oU ½t�=Ro10; as shown by the open-circle
curves in the figures. At seven steps there is very little practical difference between the smooth and
stepped portal predictions.
The train nose is acoustically equivalent to a distribution of monopole and dipole sources

extending over the nose region, where the train cross-sectional area AT is varying. Thus,
increasing the aspect ratio L=h for a fixed value of the train radius h reduces the strength of these
sources per unit length of nose, and this would be expected to reduce the amplitude of the pressure
fluctuations in the main pressure rise across the wave front. This is clear from an inspection of Fig.
7, where results are shown for 4 and 5 step approximations for the same train, tunnel and Mach
number, but with the aspect ratio increased to L=h ¼ 5 (corresponding to the experimental data in
Fig. 2 for the smooth-walled portal). It is clear that the five-step approximation now furnishes
essentially the same linear pressure rise as the optimally flared portal.
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5. Conclusion

Optimal flaring of a tunnel portal produces a linear rise in pressure over the front of the
compression wave generated by a high-speed train, with a total wave front thickness
approximately equal to ‘=M: The calculations presented in this paper indicate that the pressure
rise remains essentially linear with superposed fluctuations when the flared portal is fabricated
using discrete, coaxial cylindrical sections to approximate the ideally flared geometry. These
fluctuations may be attributed to the interaction of the train nose ‘sources’ with successive
changes in portal geometry where the tunnel diameter changes between adjacent sections of the
portal. The amplitude of these fluctuations is reduced when the length of the train nose L is
increased, so that for a given train speed, successive interactions take place over a longer interval
of time. Our numerical results indicate that a flared portal is likely to be well approximated by a
stepped portal of three or four cylindrical sections for train Mach numbers up to about 0.25
(U � 300 kph). This conclusion should now be confirmed by experiment. At higher train Mach
numbers the influence of air compressibility in the portal (neglected in the present analysis) will
become important, and must be expected to modify the predictions of this paper.
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